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Abstract--Simulations of supercritical Hadley circulation, induced by horizontal and vertical temperature 
gradients imposed on a fluid saturated porous medium layer, are performed numerically. The mathematical 
model confines the simulation to longitudinal flow in which secondary cell axes are transverse to the 
direction of the Hadley circulation. Numerical results agree well with critical (bifurcation) states predicted 
theoretically via linear stability analysis. For horizontal Rayleigh number, Rah, smaller than 40 and vertical 
Rayleigh nuraber, Ray, beyond a critical value, results indicate that the flow evolves from subcritical Hadley 
circulation to supercritical Horton-Rodgers-Lapwood-like flow. A switch in the preferential heat transport 
direction, from horizontal to vertical, parallels this evolution. For Rah beyond 40, numerical simulations 
at supercritical regime reveal the appearance of a traveling wave characterized by continuous drifting of 
flow cells in the direction opposite to the applied horizontal temperature gradient, that is towards the 

cooler temperature. 

1. INTRODUCTION 

The present work focuses on a variation of the classi- 
cal Hadley circulation phenomenon (Hart [1]) involv- 
ing horizontal anti vertical temperature gradients 
imposed on an infinite layer of fluid saturated porous 
medium confined between horizontal surfaces. This 
physical configuration belongs to a class of problems 
relevant to the study of geothermal activities, under- 
ground transport of pollutants, paper processing, 
crystal growth, buih:ling insulation, and gas reservoirs, 
just to name a few. 

Studies based on linear stability analysis have thus 
far focused on determining the critical bifurcation 
states for inclined temperature gradients as in Weber 
[2], Nield [3-5] and for inclined temperature and con- 
centration (double .diffusion) gradients, as in Nield et 
al. [6] and Manole et al. [7]. The determination of 
stability criteria is important because the transition 
from one mode to another is accompanied by changes 
in the rate of heat and mass transports. 

The characterization of the subsequent supercritical 
regime is fundamental for the control of thermal pro- 
cesses. For example', there are thermal processes that 
run more efficiently under subcritical state, as is the 
case of crystal growth in which convective (super- 
critical) effects are detrimental. The objective, in this 
case, is to maintain the process under pure conduction 
(subcritical) regime. Other processes run more 
efficiently at supercritical state, for instance thin film 
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absorption process is enhanced by secondary (super- 
critical) cellular flow. A classical example of super- 
critical regime is the Horton-Rodgers-Lapwood 
(Horton and Rodgers [8] and Lapwood [9]) natural 
convection flow within a horizontal fluid saturated 
porous medium layer heated from below (or cooled 
from above). 

A mathematical model based on Darcy's law and 
transient heat balance equation is presented and 
implemented in a numerical scheme for simulating 
supercritical longitudinal Hadley circulation. The cir- 
culation is induced by inclined temperature gradients 
within a porous medium layer. This study is aimed at 
investigating the fluid flow and heat transfer evolution 
beyond critical states (supercritical regimes). 

2. MATHEMATICAL MODEL 

Consider a fixed, isotropic and homogeneous 
porous medium bounded in the vertical direction, Fig. 
I. Except for density, all physical parameters of the 
solid porous matrix and of the fluid are assumed con- 
stant. Regarding the density variation, the Oberbeck- 
Boussinesq approximation is invoked. The solid 
porous matrix is assumed to be in thermodynamic 
equilibrium with the fluid. The flow is modeled with 
Darcy's law [10]. Under these assumptions, the gov- 
erning equations for the transport of mass, momen- 
tum and energy are : 

V 'v  = 0 (1) 

o =  - v p -  ~ ~ v - p ( T ) g j  (2) 
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NOMENCLATURE 

c specific heat [J kg-1 K 1] 2 
g acceleration due to gravity [m S -2] 
H layer height [m] # 
k thermal conductivity [W m a K- l ]  v 
K permeability [m:] 0 
L length [m] 
l wavelength p 
N number of grid lines z 
N u  Nusselt number T 
p pressure [Pa] 
P non dimensional pressure, equation 

(7) Subscripts 
q heat flux [W m -2] b 
Ra  Darcy modified Rayleigh number, c 

equation (7) f 
t time [s] h 
T temperature [K] H 
u, v, w Darcy velocity components [m s -1] m 
U, V, W non dimensional Darcy velocity p 

components, equation (7) r 
x, y, z Cartesian coordinates [m] t 
X, Y, Z non dimensional Cartesian v 

coordinates, equation (7). 0 

volumetric specific heat ratio, equation 
(7) 
dynamic viscosity [kg m ~ s-l]  
kinematic viscosity [m 2 s-~] 
non dimensional temperature, 
equation (7) 
density [kg m -3] 
non dimensional time, equation (7) 
streamfunction. 

bottom 
critical 
fluid 
horizontal 
Hadley 
fluid and solid matrix 
preferred 
reference 
top 
vertical 
at (x,y) = (0, 0). 

Greek symbols 
thermal diffusivity [m 2 s-1] 

3 coefficient of isobaric thermal 
expansion [K -l] 

~b porosity 

Superscripts 
n iteration counter 
- (overbar) longitudinal (X) average 
' secondary flow. 

0T 
(pC)m ~ q- (pc)f(V" VT) = km v2 T (3) 

where v = ui + vj + wk is the Darcy velocity and (i, j, k) 
are unit vectors parallel to ( x , y ,  z) Cartesian axis, 
respectively. The boundary conditions for velocity 
and temperature are : 

v = 0  at y = 0  and H (4) 

zXTh 
T = T 0 + ~ - - x  at y = 0  (5) 

AT. / T = T O - AT v + '- 
y=H / f top surface 

Y 

Y = M._ b o t t o m  surface 
Kz 

T=T0+ - ~ x  
nedium 

hTh  
T= To-AT,,+ T x  at  y = H.  (6) 

With physical parameters defined in the nomencla- 
ture, the system of equations (1)-(3) and boundary 
conditions listed in equations (4)-(6) are non dimen- 
sionalized using : 

(x, y, z) v K 
(X,  Y, Z )  - H ' V = ~zm/H' P = (p  + PgY) p v ~  

(pC)m ~m t T-- Tr 
2 =  z -  0 -  

(pc)f '  2 H  2'  ATv 

g f l K H A  T~ g f l K H 2  A Th A T~ 
Ra,, = , Rah -- , Tr = 

VO~m VO~mL 2 

k m 
p ( T )  = p[1 - f l ( T - -  Tr)], ~m = ( p c ) f "  (7) 

The non-dimensional form of the system of equa- 
tions (1)-(3) is then 

v .  v = o (8) 
Fig. 1. Physical model and applied temperature gradients. 

0 = -- V P - -  V + RavOj (9) 



Numerical simulation of supercritical Hadley circulation 2585 

O0 
it-~ +V" VO = V20 (10) 

where V = Ui+ ~i+ Wk. The boundary conditions, 
in non-dimensional form, are 

V = 0  at Y = 0  and 1 (11) 

Rah . 
O=O,,+~a~av.~ at Y = O  (12) 

Rah X 0 = 0 0 - - 1 + ~  at Y = I .  (13) 

A steady state solution of the system of equations 
(8)-(10), known a,; Hadley circulation [1], is 

UH -- -- Rah( Y--0.5) (14) 

VH= W H = 0  (15) 

Rah X OH = ~ + Vo -- Y 

Ra~ 1 
+ ~a~ ~-~[(Y-O.5)-4(Y-0 .5)3  ]. (16) 

It is worth noting that the stability analysis pre- 
sented by Weber [2], and refined by Nield [4], indi- 
cated that the solution presented by equations (14)- 
(I 6) bifurcates whenever Ray increases beyond a criti- 
cal value, Rave, for fixed Rah. Noting that the basic 
flow (Hadley circulation) is Z-independent, equations 
(8)-(10) can be res-tricted to the Z plane. This implies 
that the secondary flow is restricted to horizontal rolls 
with axis perpendicular to the imposed horizontal 
temperature gradient (transverse mode of dis- 
turbances), a situation expected to occur when Z to 
X length ratio of the porous layer is relatively small. 

For transverse secondary flow, the two dimensional 
version of equations (8)-(10) is solved numerically 
with boundary conditions listed in equations (l l ) -  
(13). The present model is valid also for salinity driven 
convection if one replaces T by concentration C, ther- 
mal diffusivity by mass diffusivity, and isobaric 
coefficient of thermal expansion by solutal expansion 
coefficient. Nield [4] indicated that for Rah smaller 
than 40 the flow bifurcation is to a stationary mode 
for increasing Ray. For larger Rah, the corresponding 
expected bifurcation is to a time-dependent oscillatory 
mode. 

3. NUMERICAL METHOD 

Convection generated by inclined temperature 
gradients within an infinite horizontal layer presents 
the following characteristics : (1) the basic steady state 
flow (Hadley circulation) is invariant with the longi- 
tudinal coordinate, X and (2) the secondary con- 
vective flow that is expected to develop at supercritical 
state (Ray > Ravo) must be periodic in the longitudinal 
direction, with period l. With these in mind, the non 
dimensional length of the numerical domain, L/H, is 
considered to be a nmltiple of l, the wavelength of the 

secondary flow. Consequently, the velocity boundary 
conditions at the vertical surfaces of the numerical 
domain have to satisfy : 

U(0, Y) = U(L/H, Y), V(O, Y) = V(L/H, Y). (17) 

Over a distance L/H, the horizontal temperature 
gradient induces an increase equal to A0h on the tem- 
perature of the basic flow. Since the secondary con- 
vective flow is periodic within L/H, the appropriate 
temperature vertical boundary condition is 

0(0, Y) = O(L/H, r ) -AOh.  (18) 

The control volume method (Patankar and Spal- 
ding [11]) is used for solving the two dimensional 
version of equations (8)-(10) with SIMPLER algo- 
rithm and Power Law scheme (Patankar [12]). Stag- 
gered grids (Harlow and Welch [13]) are used, where 
pressures (and temperatures) are evaluated at 
locations different from those where the velocities are 
evaluated. Integration in time of the energy equation 
is performed fully implicitly. Although the aim of 
the present work is not to simulate the bifurcation 
phenomena, the programming was done carefully 
enough so that numerical results could be compared 
with theoretical predictions of critical states, helping 
validate the code. A very interesting study that dem- 
onstrates the use of the control volume method for 
simulating bifurcation to time periodic natural con- 
vection flow was presented by Janssen et al. [14]. 

Although being of Dirichlet type, the velocity and 
temperature vertical boundary conditions, equations 
(17) and (18), do not set a specific value of the variable 
at the boundary, but rather, they simply specify a 
relationship between the values at the two vertical 
boundaries of the numerical domain. Combined with 
the possibility of tilted secondary flow cells interface, 
as indicated next, the handling of the boundaries of 
the numerical domain required extra care. 

Mehta [15], in a similar inclined gradient problem 
(double-diffusive) showed that the critical flow cells 
interface might be tilted under certain circumstances. 
Further evidence that cells interface might be tilted 
was given by Sarkar and Phillips [16] in their study of 
thermohaline instabilities in a saturated infinite 
porous medium. For large horizontal temperature 
gradients, Sarkar and Phillips [17] investigated also 
the roll development within a saturated and thick layer 
of porous medium. Tilted cell interfaces were revealed 
at critical stability state. 

It is evident that in general the interface between 
two adjacent secondary flow cells might not be verti- 
cal. Therefore, imposing impermeable boundary con- 
ditions for the secondary flow at the vertical surfaces 
of the numerical domain is too restrictive. 

Figure 2 shows a special choice of discretization in 
the X direction that allows for the implementation of 
the boundary conditions, the appearance of tilted cells 
interface, and yet efficient computation. The grid has 
been rolled in the figure for an easier identification of 
the vertical grid lines to which the periodic properties 
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Fig. 2. Vertical grid lines distribution for periodic vertical 
boundary conditions. 

of the convective flow are applied. Consider the orig- 
inal numerical domain, limited by X =  0 and 
X = L/H, discretized in the horizontal direction with 
N lines where velocity U is computed. The actual 
numerical domain is extended beyond these limits by 
adding two additional lines, (N+ 1) and (N+2).  In 
this way, with boundary conditions (17), the value of 
the velocity at line 1 is updated with the computed 
value at interior line N. By the same token, the value 
of the velocity at line (N+ 2) is updated with the value 
computed at interior line 3. 

Extending the domain by two lines induces period- 
icity of first derivatives also, enhancing the numerical 
convergence of the code specially during the initial 
phase of the iteration process. Furthermore, it allows 
for an indirect verification that the obtained numerical 
solution is indeed periodic. This is accomplished by 
comparing the velocity values computed at lines 2 
and (N+  1). These are the first interior lines of the 
numerical domain, and their values must be the same, 
for each Y, if the solution is perfectly periodic. (Recall 
that the boundary conditions are applied at lines 1 
and N +  2 only.) 

Vertical boundary conditions for temperature are 
handled in a similar fashion, where the dashed lines 
shown in Fig. 2 locate the temperature nodes. The 
temperatures at the interior lines, from 2 to N +  1, 
are computed. Applying boundary condition (18), the 
temperatures at line 1 become equal to the tem- 
peratures at line N minus the temperature difference 
A0h, and so on. 

The convergence criterion used in here is based on 
a max-norm of the top and bottom vertical Nusselt 
number (defined in the following section, equation 
(22)), 

r i ~  - ~ + ' ]  
MAX/] ' . . . . .  ~< 10 - 6  (19) 

~TL-_ .n 
L[ NUvt.b 

where n and n + 1 are two consecutive iterations. 

The grid is uniformly distributed, with same grid 
step in both directions. Grid accuracy tests are per- 
formed comparing the theoretical solution for the base 
flow (Hadley circulation) with numerical results 
obtained for subcritical states. For  instance, using 
1/20 grid step, for Rah = 10, Rav= 40, the maximum 
difference in velocity and temperature are respectively 
0.011% and 0.046%. Results for supercritical regimes 
are estimated using 1/20 grid step and subsequently 
refined by reducing the grid step in 30% until con- 
secutive results change by less than 4%. 

4. RESULTS AND DISCUSSION 

The choice of Rayleigh number values used in the 
numerical simulations is based essentially on the bifur- 
cation criteria to supercritical regime as established 
by Nield [4]. The vertical Rayleigh number, defined 
as in equation (7), is the same as the vertical Rayleigh 
numbers used by Weber [2] and Nield [4]. The hori- 
zontal Rayleigh number is also the same, provided 
3" used by Nield [4] be replaced with (ATh/L). Note 
also that for small Darcy number and large Prandtl 
number, the Darcy model is expected to be reasonably 
accurate within the Ray range investigated here, as far 
as inertial effects are concerned (Lage [18]). 

Horizontal and vertical Nusselt numbers, rep- 
resenting the energy transported by convection and 
conduction in each direction, are defined respectively 
a s  

N u  h ( X ) = - -  
qh 
AT~ 

km m 
L 

l I ~ I p b I C p ( Z - - Z r ) - - k m ~ x T l d y  

AT~ 
km m 

L 

Rav ~0 
(20) 

Nuv(X, Y) = - -  
q v  

ATv 
k m - -  

H 

AT~ 
km H 

Corresponding non-dimensional wavelength-aver- 
aged top and bottom vertical heat fluxes, Nlgvt and 
Nuvb, and horizontal heat flux, NUh, are calculated as 
follows : 
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Fig. 3. Wavelength averaged vertical Nusselt number : top, 
Rah = 10 ; bottom, Rah = 40. 

1;0 ~ = 7 Nu:lY=odX 

~v ,  = ~ Nu~ly= , dX 

l; 
~ h  =7 Nuh dX. (22) 

For  each group (Rav, Rah) the length of  the numeri- 
cal domain, L/H, is varied since no information is 
available on the wavelength of  the supercritical sec- 
ondary flow. For  each length, a wavelength,/ ,  is deter- 
mined by dividing (L/H) by the number of  patterns 
present in the flow. Obviously, whenever the sec- 
ondary flow effects are negligible the length of  the 
numerical domain becomes irrelevant since the base 
flow (Hadley circulation is X independent. 

Figure 3 presents the vertical Nusselt  number vari- 
ation with wavelength for Rah equal to 10 (top) and 
40 (bottom), and several Ray. All simulations have 
converged to a steady-state solution with 
NUv, = Nuvb = Nuv. Dots indicate the values of  l that 
maximize the vertical heat transfer. Invoking the 
maximum heat transport hypothesis introduced by 
Malkus [19], these values are taken as the preferential 
wavelengths, lp, of  the system. It is important  to stress 
that although it is known that for H o r t o n - R o d g e r s -  
Lapwood convection the Malkus hypothesis under- 
predicts the preferred wavelength of  the flow (Com- 
barnous and Bories [20]), the heat transfer predictions 
agree well with experiments as indicated by Busse and 
Joseph [21] and Gupta  and Joseph [22]. 

Also, the heat transfer results presented in Fig. 3 
are very weakly dependent on wavenumber,  therefore 
the discussion on the validity of  Malkus hypothesis is 
not  important  since the focus of  the present work is 
on heat transfer phenomena. In fact, for low Ray the 
Nusselt number value obtained is reasonably accurate 
if  the wavelength predicted by the linear stability 
analysis study of  Nield [4] is taken as preferred wave- 
length for supercritical regimes. 

Table 1 offers the first indication that the flow 
regime, at low horizontal Rayleigh number, evolves 
from subcritical Hadley flow to H o r t o n - R o d g e r s -  
Lapwood-like flow. In it, Nusselt and wavelength 
values obtained for the case Rah = 10, are compared 
with the Nusselt values of  Hadley flow, Nuv., and with 
the results obtained by Lage [18] and Gupta  and 
Joseph [22] for Hor ton -Rodge r s -Lapwood  flow. The 
Hadley flow based Nusselt number,  Nuv., is obtained 
by using equations (14)-(16) into the vertical Nusselt 
definition, equation (22). As Ray increases, the aver- 
aged vertical Nusselt number,  Nuv, seems to depart 
from the vertical Nusselt number value of  Hadley 
circulation, Nuv., tending to values similar to the Nus- 
selt number values of  the Hor ton -Rodge r s -Lapwood  
flow. 

Attention is now turned to the deviation from the 
basic flow (Hadley circulation) as Ray increases. Fig- 
ure 4 (left) shows the flow evolution, streamlines of  
the main flow and of  the secondary flow, as Rav 

m 

Table 1. Comparison of preferred wavelength, lp, and vertical Nusselt number, Nuv, with Hadley flow 
N u v  , Nusselt number, Nuv,, Nusselt number, Nu~, obtained by Lage [18], and Nusselt number, GJ and 

wavelength, ~J, obtained by Gupta and Joseph [22] 

Numerical results Lage [18] Gupta and Joseph [22]§ 
Rav lp Nuv Nuv. NuL~ Ra~v J ~J NuGv J 

40 - -  1.21 1.21 - -  39.48 2.00 1.00 
45 2.01 1.23 1.19 - -  - -  
47.5 2.10 1.34 1 . 1 8  . . . .  
50 2.17 1.45 1.16 1.44 49.2 1.98 1.43 
75 1.87 2.16 1.11 - -  76.5 1.81 2.27 

200t 1.27 3.95 1.04 3.76 207 1.17 5.07 

f Experimental results for Ray = 200 : lp ~ 1.82, Nuv = 2.8-5.6 (Combarnous and Bories [20]). 
Numerical results for Horton-Rodgers-Lapwood convection with wavelength equal to 2. 

§Predictions in agreement with experiments (see Nield and Bejan, [23], p. 163). 
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Fig. 4. Streamlines (left) and isotherms (right) for Rah = 10. W, main flow ; W', secondary flow ; Wb, 
Hadley flow ; (+), counter clockwise rotation ; ( - ) ,  clockwise rotation (W increment : 10 -3, 0.1, 0.2, 1, 

for Ray = 42.5, 45, 50 and 200, respectively). 

increases using the preferred wavelength value indi- 
cated in Table 1. The streamlines of the Hadley flow, 
W,, are also presented for reference. The secondary 
streamline distribution, W', is obtained by subtracting 
the Hadley streamfunction, WH, from the flow 
streamfunction, W, 

W' = W-- WH (23) 

where streamfunctions are defined by 

8(w, w., W') 
OY (U, UH, U') 

0(w, w., W') 
c~X (V, VH, V'). (24) 

The W-streamlines for Rav= 42.5 are very similar 
to the WH-streamlines of a Hadley circulation, indi- 
cating the weakness of the secondary flow. As Ra, 
increases (Ray = 45), the W-streamlines show the 
growth of a cell rotating in the same sense as the 
Hadley circulation. Other cells, rotating in the 
opposite sense, develop around the initial cell at about 
Ray = 50. Their intensity keeps growing with Rav. At 
Rav= 200, all cells assume almost the same size, with 
consecutive cells being counter rotating, similar to the 
Horton-Rodgers-Lapwood flow. Notice that the W'- 
streamlines are of similar shape with counter rotating 
consecutive cells throughout the Rav evolution. Evi- 
dently, the strength of this secondary flow is enhanced 
as Ra, increases. 

The evolution of the flow can be explained by focus- 

ing on the superposition of Hadley and secondary 
flows. At low Ray, the secondary cell that rotates coun- 
ter clockwise ( - )  has its horizontal velocity com- 
ponent in the same sense as the Hadley velocity, so its 
effect is amplified by the Hadley flow. The secondary 
flow cell that rotates clockwise (+ )  is subdued by the 
Hadley circulation since its horizontal velocity is in 
opposite sense. The result is the elongated horizontal 

Wle__0.5 3 

2 

1 

0 

-1 

-2 

-3 

-4 

-5 
0 0.5 1 

X/tp 
Fig. 5. Streamfunction at mid height (Y = 0.5) vs normalized 

X for Rah = 10. 
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counter clockwise cell shown at Ray = 45, for 
instance. As Ra., increases further and the secondary 
flow strengthens, the clockwise secondary cell eventu- 
ally overcomes the opposite Hadley circulation, that 
is when the clockwise rotating cells appear in the main 
flow (Ray = 50). Furthermore,  the enhancing effect of  
the Hadley flow oll the counter clockwise secondary 
cells is proportionally reduced. At Ray = 200, the 
strength of  the Hadley flow becomes negligible when 
compared with the secondary flow, explaining why a 
Hor ton-Rodgers -Lapwood- l ike  flow sets in. 

Also evident is that the interface between con- 
secutive cells is inc, reasingly tilted as Rav is reduced. 
The angle, in degrees, between a vertical line and the 
interface line is approximately equal to 0.0, 2.1, 2.6, 
8.4 and 11.7 for Ra,, equal to 200, 75, 50, 45 and 42.5, 
respectively. 

The corresponding isotherms, plotted in Fig. 4 
(right), also suggest the transition from Hadley flow 
to Hor ton-Rodgers -Lapwood- l ike  flow as Ra,, 

increases. The isotherms become more concentrated 
near the horizontal surfaces (consequence of  the better 
mixing) indicating thinner thermal boundary layers 
and, consequently, increased vertical heat transfer 
coefficient. The isotherms pattern indicates also 
periodicity in the horizontal and vertical heat transfer 
coefficients. 

Figure 5 offers evidence that the bifurcation state, 
simulated numerically, is very close to the theoretical 
value. In it, the streamfunction at mid layer (Y = 0.5) 
is plotted against the horizontal direction normalized 
with the respective preferred wavelength, X/Ip, for sev- 
eral Ray. For  Hadley circulation, the streamfunction 
curve is expected to be horizontal (since the flow is 
X-independent) and equal to -1 .25 .  The value for 
Rav= 42.5 varies from -1 .11  to - 1 . 3 9 ,  averaging 
- 1.25. Results for Ray = 42 show, within the accu- 
racy of  the present numerical simulation, a stream- 
function value uniformly equal to - 1.25 with no sec- 
ondary flow pattern being identified. 
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Fig. 7. Wavelength averaged vertical and horizontal Nusselt 
numbers. 

F rom the linear stability analysis result of  Nield [4], 
specifically his equation (31) for Rah = 10, the critical 
wavelength value and critical vertical Rayleigh num- 
ber for onset of  transverse instability are approxi- 
mately 2.03 and 43.9, respectively. Taking into 
account the differences between the two methods, the 
agreement is remarkable. 

Figure 6 shows, for Rav= 45, 50, 75 and 200, the 
longitudinal variation of  horizontal and top and bot- 
tom vertical Nusselt numbers. The negative of  the 
horizontal Nusselt number values are plotted to 
improve readability of  the graphs. The horizontal 
Nusselt number for Hadley circulation is constant in 
X and equal to 2.6, 3.0, 5.1 and 15.5, for Ray = 45, 
50, 75 and 200, respectively. The wavelength-averaged 
horizontal Nusselt number decreases with Ray, 
reflecting the influence of  the secondary flow (the 
cellular form of the secondary flow is detrimental to 
the convection of  heat in the horizontal direction). At  
Rav= 200 the wavelength-averaged horizontal Nus- 
selt number is close to zero as expected. 

Vertical Nusselt numbers at Y = 1 and at Y = 0 
show central symmetry as expected. The profiles fol- 
low the convective effect of  circulating cells, with 
maximum Nuv near the region of  incoming vertical 
stream. 

Figure 7 presents the wavelength averaged vertical 
(top) and horizontal (bottom) Nusselt numbers vari- 
ation with Ra, and Rav. Notice that the negative of  the 
horizontal Nusselt number is plotted for convenience. 
The thick lines (to the left) denote the subcritical 
regime, with dashed line referring to conduction 
regime (Rah = 0) and dotted and continuous lines 
referring to Hadley flow (Ra, > 0). Thin lines show 
the variation of  the Nusselt numbers once the super- 

critical regime is established. The Nuv values for Hor-  
t on -Rodge r s -Lapwood  regime (Rah = 0) are those 
reported by Lage [18]. The black triangles locate the 
numerically estimated critical states. The Nusselt 
number for Hadley flow regime can be obtained 
numerically. It can be obtained also theoretically by 
using the temperature distribution, equation (16), and 
the Nusselt definitions, equations (20)-(22). The 
theoretical approach indicates that the averaged ver- 
tical Nusselt number for Hadley regime is function of  
Ra2/Rav, that is why its value tends to infinity as Rav 
tends to zero with Rah constant. This result has to be 
taken cautiously : it is not the vertical dimensional 
heat flux that is tending to infinity as Ray decreases 
but rather the vertical temperature difference used to 
non dimensionalize the heat flux is going to zero (see 
equation (21)). 

Figure 7 is critical from an engineering standpoint. 
It conjoins the heat transfer information of  two dis- 
tinct and predominating flow regimes:  subcritical 
(basic) Hadley flow and supercritical Hadley flow. It 
is clear that the ability of  the basic Hadley flow to 
transfer heat in the vertical direction becomes increas- 
ingly hindered when the vertical Rayleigh number is 
increased. At the critical state, the secondary flow 
sets in providing a more effective path for heat to 
be transferred through the horizontal surfaces of  the 
porous layer. Further  increase in Rav enhances heat 
transfer in the vertical direction. It also reduces heat 
transfer in the horizontal direction. The results show 
also that the Hadley flow is slightly beneficial to the 

- -  8 

NUv 7 

6 

5 

4 

3 

2 

1 

0 

' ' ' i . . . .  i , , , 

Ra v = 200 

100 200 
, , i , i t i 

300 
"~ xl04 

400 

7 
Nu . . . .  ' . . . .  ' . . . .  ' . . . .  

5 
4 \N-'ttVb 

-Nuh(X= £p) 

0 : 

-1  , 

0 0.1 10 20 30 

Fig. 8. Time evolution of Nusselt number : top, Rah = 40 ; 
bottom, Ra, = 80. 
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vertical heat transport  at supercritical Rav when com- 
pared with the heat transfer provided by Ho r t o n -  
Rodgers-Lapwood flow. 

5. TRANSITION TO TRAVELING WAVE REGIME 

Figure 8 presents the time evolution of the top and 
bottom vertical wavelength averaged Nusselt 
numbers. The top graph shows results for Rah = 40 
and Ray = 200 and 400. Both vertical Nusselt values, 
top and bottom, coincide for each Ray. Also evident 
in both curves is the initial oscillatory behavior. Oscil- 
lation amplitude and frequency are intensified as Rav 
increases. Numerical results indicated a critical state 
at Ray ~ 108. This Nusselt behavior agrees well with 
Nield's [4] prediction of transition from transverse 
stationary mode ~:o transverse oscillatory mode at 
Rah = 40, with Ra,o equal to approximately 118. 

In the bottom graph, for Rah = 80 and Ray = 400, 
the oscillations persist throughout the simulation, 

indicating an oscillatory regime. In this case top and 
bottom Nusselt numbers are distinct in time during 
most of the cycling. Also cyclic is the variations of the 
horizontal Nusselt number  computed at X = l o. All 
curves cycle at the same frequency of  about  
1.17x 10 - l .  Coincidentally, whenever the vertical 
Nusselt numbers diverge, the horizontal one increases, 
allowing for the excess heat to flow in the horizontal 
direction. During one cycle, the time averaged vertical, 
top and bottom, and horizontal Nusselt values are 
5.51, 5.33 and 0.72. Finally, observe that the hori- 
zontal Nusselt number  oscillates between a negative 
and a positive value. In a cellular flow, this can occur 
if a fixed (in space) cell tilts periodically (in time) 
around a vertical axis, or if moving cells, with opposite 
tiltness, cross periodically the location X = lp. It is 
shown next that the latter describes the phenomenon 
correctly. 

Figure 9 presents the time evolution, during one 
cycle, of streamlines (left) and isotherms (right) for 

0 
Fig. 9. Streamlines and isotherms temporal evolution during one cycle : Rah = 80 ; Ray = 400 ; (+),  

counter clockwise rotation ; ( - ) ,  clockwise rotation. 
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Fig. 10. Qualitative mapping of preferred flow configuration ; Q, simulations performed in the present 

study. 

Rah = 80 and Ray = 400. Each sequence of five frames 
(equally spaced in time) follows the numbered dots 
included for reference in the bottom graph of Fig. 8. 
The two cells, with approximately 5 : 1 width ratio, 
constitute a flow pattern. The vertical axis of the cells 
are tilted, and the tiltness varies slightly in time as the 
cells move (drift) from right to left. The larger cell 
rotates counter clockwise, being horizontally stret- 
ched by the basic Hadley circulation. The opposite is 
the case of the smaller cell that tends to break ver- 
tically into two cells (see streamlines at the center of 
smaller cell during frame sequence 2-3-4). 

Not so evident from these pictures is the change in 
the rate of drifting. Looking closely at one interface 
streamline (e.g. one vertical line separating the small 
cell from the big cell), and following its motion, it can 
be seen that the horizontal distance traveled by this 
line from frame 1 to 2 is different from the distance 
traveled by it from frame 2 to 3, for instance. A 
numerical visualization technique developed during 
this project allows a more sensible observation that 
the drifting rate varies in time. Isotherms evolution 
shows that the small cell deforms the temperature field 
more vigorously than the larg cell. 

Again the main features of the oscillatory flow agree 
qualitatively with those anticipated by the stability 
analysis of Nield [4]. The phenomenon presented in 
Fig. 9 is that of an irregular (with respect to speed) 
traveling wave. The non dimensional averaged wave 
speed is approximately equal to 2.34 × 10-3/q~. 

Finally, the numerical investigation performed here 
is best summarized with the qualitative mapping of 
several flow phenomena, Fig. 10. The inclusion of 
the critical state curves (solid lines after Nield [4]) is 
helpful in delineating the fundamental transitions 
from Hadley circulation to transverse stationary flow 
(Rah < 39.5) and to transverse oscillatory flow 

(Rah > 39.5). Results presented in this study are for 
configurations indicated with dots in Fig. 10. 

6. CONCLUSIONS 

Simulations of supercritical Hadley circulation 
induced by inclined temperature gradients, within a 
fluid saturated porous layer, are performed numeri- 
cally. The parametric range of the present inves- 
tigation is guided by the linear stability analysis results 
published in the literature. Numerical results pre- 
sented in here are checked against stability results 
showing remarkably good agreement. 

For horizontal Rayleigh number smaller than 
approximately 40, the transition from Hadley cir- 
culation occurs with the appearance of transverse flow 
cells as the vertical Rayleigh number is increased. It is 
verified that for Ray beyond approximately 200 the 
flow becomes cellular dominated, similar to Hor ton-  
Rodgers-Lapwood flow. The oscillations occur at 
modest values of Rayleigh numbers, where the mech- 
anism is different from that producing oscillations at 
high values of Rayleigh numbers. As Nield [4] pointed 
out, the oscillations are essentially a thermal phenom- 
enon, and involve a switching between two steady- 
state modes. 

At Ra n around 40 and Rav above the critical value 
(supercritical flow), a transition zone is detected in 
which the heat transfer evolves following an oscil- 
latory behavior that decays in time. The amplitude 
and frequency of these oscillations increase as Rav 
increases. 

At Rah larger than 40, the transition is from Hadley 
circulation to oscillatory flow, as Ray increases. The 
oscillatory flow, in the form of a traveling wave, is 
characterized by the following main aspects: (1) flow 
pattern of two cells with width ratio 5 : 1 ; (2) flow 
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drif t ing in the direct ion opposi te  to the imposed hori-  
zontal  t empera ture  gradient ,  t ha t  is towards  the cooler 
t empera ture  ; (3) oscillatory tilt ing of  vertical cell axis 
and  (4) non  unifoJTm drift ing speed. Some of  these 
characterist ics agree with those ant ic ipated  by Nield 

[41. 
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